Função
de 1º grau
DefiniçãoChama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a

Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.
Veja alguns exemplos de funções polinomiais do 1º grau:
f(x) = 5x - 3, onde a = 5 e b = - 3
f(x) = -2x - 7, onde a = -2 e b = - 7
f(x) = 11x, onde a = 11 e b = 0
Gráfico
O gráfico de uma função polinomial do 1º grau, y = ax + b, com a

Exemplo:
Vamos construir o gráfico da função y = 3x - 1:
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:
a) Para x = 0, temos y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1).
b) Para y = 0, temos 0 = 3x - 1; portanto,


Marcamos os pontos (0, -1) e

|
![]() |
Já vimos que o
gráfico da função afim y
= ax + b é uma
reta.
O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.
O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.
O termo constante,
b, é chamado coeficiente linear da reta.
Para x = 0, temos y
= a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a
reta corta o eixo Oy.
,
Integrante: MIllena Hávilla Marinheiro Vidal
,
Integrante: MIllena Hávilla Marinheiro Vidal
Nenhum comentário:
Postar um comentário